Spatial segregation of somato-sensory and pain activations in the human operculo-insular cortex

نویسندگان

  • Laure Mazzola
  • Isabelle Faillenot
  • Fabrice-Guy Barral
  • François Mauguière
  • Roland Peyron
چکیده

The role of operculo-insular region in the processing of somato-sensory inputs, painful or not, is now well established. However, available maps from previous literature show a substantial overlap of cortical areas activated by these stimuli, and the region referred to as the "secondary somatosensory area (SII)" is widely distributed in the parietal operculum. Differentiating SII from posterior insula cortex, which is anatomically contiguous, is not easy, explaining why the "operculo-insular" label has been introduced to describe activations by somatosensory stimuli in this cortical region. Based on the recent cyto-architectural parcellation of the human insular/SII cortices (Eickhoff et al., 2006, Kurth et al., 2010), the present study investigates with functional MRI (fMRI), whether these structural subdivisions could subserve distinct aspects of discriminative somato-sensory functions, including pain. Responses to five types of stimuli applied on the left hand of 25 healthy volunteers were considered: i) tactile stimuli; ii) passive movements; iii) innocuous cold stimuli; iv) non-noxious warm and v) heat pain. Our results show different patterns of activation depending on the type of somato-sensory stimulation. The posterior part of SII (OP1 area), contralateral to stimuli, was the only sub-region activated by all type of stimuli and might therefore be considered as a common cortical target for different types of somato-sensory inputs. Proprioceptive stimulation by passive finger movements activated the posterior part of SII (OP1 sub-region) bilaterally and the contralateral median part of insula (PreCG and MSG). Innocuous cooling activated the contralateral posterior part of SII (OP1) and the dorsal posterior and median part of insula (OP2, PostCG). Pain stimuli induced the most widespread and intense activation that was bilateral in SII (OP1, OP4) and distributed to all sub-regions of contralateral insula (except OP2) and to the anterior part of the ipsilateral insula (PreCG, MSG, ASG). However, the posterior granular part of insula contralateral to stimulus (Ig area) and the anterior part of SII bilaterally (OP4) were specifically activated during pain stimulation. This raises the question whether these latter areas could be the anatomical substrate of the sensory-discriminative processing of thermal pain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Human Operculo-Insular Cortex Is Pain-Preferentially but Not Pain-Exclusively Activated by Trigeminal and Olfactory Stimuli

Increasing evidence about the central nervous representation of pain in the brain suggests that the operculo-insular cortex is a crucial part of the pain matrix. The pain-specificity of a brain region may be tested by administering nociceptive stimuli while controlling for unspecific activations by administering non-nociceptive stimuli. We applied this paradigm to nasal chemosensation, deliveri...

متن کامل

Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation

Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with ...

متن کامل

High opiate receptor binding potential in the human lateral pain system.

To determine how opiate receptor distribution is co-localized with the distribution of nociceptive areas in the human brain, eleven male healthy volunteers underwent one PET scan with the subtype-nonselective opioidergic radioligand [(18)F]fluoroethyl-diprenorphine under resting conditions. The binding potential (BP), a parameter for the regional cerebral opioid receptor availability, was compu...

متن کامل

Cortical Activation Changes during Repeated Laser Stimulation: A Magnetoencephalographic Study

Repeated warm laser stimuli produce a progressive increase of the sensation of warmth and heat and eventually that of a burning pain. The pain resulting from repetitive warm stimuli is mediated by summated C fibre responses. To shed more light on the cortical changes associated with pain during repeated subnoxious warm stimulation, we analysed magnetoencephalographic (MEG) evoked fields in elev...

متن کامل

Operculo-insular pain (parasylvian pain): a distinct central pain syndrome.

Central pain with dissociated thermoalgesic sensory loss is common in spinal and brainstem syndromes but not in cortical lesions. Out of a series of 270 patients investigated because of somatosensory abnormalities, we identified five subjects presenting with central pain and pure thermoalgesic sensory loss contralateral to cortical stroke. All of the patients had involvement of the posterior in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 60 1  شماره 

صفحات  -

تاریخ انتشار 2012